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Example 0.1. If we let C = P1, then k(C) = k(t) = k(C(q)) and the φ∗(t) = tq,
thus the extension k(C)/φ∗(k(C)) is of the form k(t1/q)/k(t) which as you may
recall from the first couple of lectures is in some sense the most basic inseparable
extension.

Normally, separability is not a desirable property if one is interested in Galois
theory. However in our situation, inseparability plays a crucial role due to the next
corollary which in some sense says that the Frobenius is the only map which can
cause any sort of inseparability phenomenon. This gives a useful characterisation
of the Frobenius which will be necessary later.

Corollary 0.2. Let ψ : C1 → C2 be a morphism of fields, then φ factors uniquely

λ ◦ φ : C1 → C
(q)
1 → C2

where φ is the qth power frobenius and λ is a separable map. In particular if Ψ is
purely inseparable, then λ is an isomorphism.

Proof. Let K be the separable closure of ψ∗(k(C2) in k(C1). Then k(C1)/K is

purely inseparable of some degree q say. Thus k(C)q ⊂ K, but φ∗k(C
(q)
1 ) = k(C)q

and is of degree q, thus by comparing degrees we have K = φ∗k(C)
(q)
1 ). Thus

we have the tower of fields k(C1)/φ∗k(C
(q)
1 )/ψ∗(k(C2) which by ?? gives us the

required factorisation.

When Ψ is purely inseparble, φ∗(k(C
(q)
1 )) = ψ∗(C2), and so λ is an isomoprhism.

�

Finally let k = Fq the finite field with q elements. In this case, if C ⊂ Pn is
defined over k then I is generated by f1, ..., fm whose coefficients are in Fq, hence

f
(q)
i and so C(q) = C, so that φ becomes a morphism from C to itself.

Explicitly, φ(x0 : ... : xn) = (xq0 : ... : xqn) and fi(x
q
0, ...x

q
0) = fi(x0, ..., xn)q since

f has coefficients in in Fq, so the image is contained in C.

0.1. Differentials. In this section we discuss the differentials on a curve. From the
point of view of geometry, this plays the role in traditional calculuss of linearisation,
eg. tangent spaces and differential forms. However in the algebraic setting it also
gives a useful criterion for determining when a map is separable.

Definition 0.3. Let C be a curve, the space of meromorphic differentials ΩC of
C is the k(C) vector spaces spanned by symbols dx for x ∈ k(C) subject to the
following three conditions:

i) dx = 0 for x ∈ k
ii) d(x+ y) = dx+ dy for x, y ∈ k(C)
iii) d(xy) = xdy + ydx for x, y ∈ k(C)

This is the algebraic analogue of differential forms. More precisely, a meromor-
phic differential is a section of the sheaf of differential forms. This means it is an
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2 COMPLEX MULTIPLICATION: LECTURE 13

assignment to each point of the curve a point in the cotangent space at the point.
Moreover this assignment is in a sense ”smooth.”

If ψ : C1 → C2 is a non-constant map of curves, the pullback ψ∗ induces a map
of differentials also denoted

ψ∗ : ΩC2 → ΩC1

given by

ψ∗(dx) = dψ∗(x)

Proposition 0.4. Let C be a curve.
i) ΩC is 1 dimensional vector space over k(C).
ii) For x ∈ k(C), dx is basis for ΩC if and only if k(C)/k(x) is separable

Proof. [Matsumura] 27 A,B �

An important consequence of this proposition is that a map of curves is separable
if and only if the induced map on differentials is non-zero. Before proving it though
here is an example to illustrate why the result is true.

Example 0.5. Let C = P1, then k(C) = k(t). Then the symbol dt generates ΩC
by the above proposition (one can also see this directly, using the chain rule for
differentation, that df = f ′dt where f ′ is the formal derivative of f with respect to
t). Then the q frobenius φ : C → C(q) = C induces the pullback φ∗ : f 7→ fq on
function fields. Then

φ∗dt = dφ∗t = dtq = qdtq−1 = 0

since we are in characteristic p.

In some sense, a non-separable is of the form x 7→ xq, so differentiating will give
0 since it turns the exponenets q into multiplication byq.

Corollary 0.6. A morphism of curves is separable if and only if

ψ∗ : ΩC2
→ ΩC1

is non-zero (equivalently injective).

Proof. Note since k was perfect, we have k(C1)/ψ∗k(C2) is separable if and only if

k(C1)/ψ∗k(C2) is separable. Let y ∈ k(C2) such that dy generates ΩC2
, in other

words k(C2)/k(y) is separable. Then

Ψ∗ injective ⇔ ψ∗dy = dψ∗is a basis for ΩC1

⇔ k(C1)/ψ∗yis separable

⇔ k(C1)/ψ∗k(C)2is separable

where the last equivalence follows from the fact that k(C2)/k(y) is separable.
�
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0.2. Intersection multiplicities and Bezout’s theorem. Let M be a module
over a ring R. A chain of length l in M is a sequence of submodules

M0 (M1 ( ... (Ml

Definition 0.7. The length of M is the length of the longest chain of submodules
of M . When this is an integer we say M is of finite length.

The above allows to make an algebraic definition of intersection multiplicity in
the algebraic setting.

Let C1, C2 ⊂ A2 defined by the equations f1, f2 be two curves which intersect at
a point P , the intersection multiplicity at P , denoted by IP (C1, C2), is defined to
be the length of the k[x, y]P module k[x, y]P /(f1, f2).

Example 0.8. Let k = k and let C1 be the curve in A2 given by the equation
y2 = x3 + x and C2 the line ax − by = 0. Let P = (0, 0), one computes that the
tangent line at P of C1 is given by the line x = 0, hence one would expect the
intersection multiplicity to be > 1 if b = 0 and 1 otherwise.

Suppose b 6= 0, then we define c = a/b so that y = cx. Then k[x, y]P /(f1, f2) is
isomorphic to k[x]P /(x

3 − cx2 + x) = k[x]P /(x(x2 − cx + 1)). Since polynomials
with non-zero constant term are invertible in k[x]P , we see that x2 − cx + 1 is a
unit in k[x, y]P , hence

k[x, y]P /(f1, f2) ∼= k[x]/(x) ∼= k

and this module clearly has length 1.
If however b = 0, we have k[x, y]P /(f1, f2) ∼= k[y]P /(y

2) which has the chain of
length 2

0 ( (y) ( k[y]P /(y
2)

Thus this definition agrees with geometric intuition of lines with the same tangent
space intersecting with a larger multiplicity.

Now if C1, C2 ⊂ P2 are two curves defined by homogeneous f1, f2 and P ∈
C1 ∩ C2, by taking open affine covers and dehomogenising we can apply the above
definition and define the intersection multiplicity IP (C1, C2); it is independent of
the affine chart chosen.

Theorem 0.9. (Bezout’s theorem) Let C1, C2 ⊂ P1 be two curves over k defined
by f1 and f2 of degrees n1 and n2 respectively. Then C1 ∩C2 is finite and we have∑

P∈C1∩C2

IP (C1, C2)

Proof. [Hartshorne] I 7.8 �

1. Elliptic curves

In this section, we study elliptic curves from the point of view of algebraic geom-
etry. Over C elliptic curves and complex tori are the same thing, and our first order
business will be to show that the group structure can be defined algebraically. This
is a hugely important result as it provides the mechanism which forces the torsion
points to generate algebraic extensions and moreover this definition can be gener-
alised to an elliptic curves over any field K. Important special cases are when K
is a number field or when K is a finite field; these cases are related by reducing an
elliptic curve modp.
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1.1. Elliptic curves over general fields. Let us begin with the general definition
of an elliptic curve.

Definition 1.1. Let K be a field. An elliptic curve over K is a pair (E, 0) where
E is a non-singular projective curve of genus 1 together with a point 0 ∈ E(K).

An isomorphism φ : E → E′ of elliptic curves is a ismorphism of algebraic curves
such that φ(0) = 0′.

For the definition of genus see Silverman [AEC] Chapter II Section 4
Normally we just speak of an elliptic curve E, with the given point 0 understood.

This is a somewhat abstract definition, however it follows from the Riemann Roch
theorem that every elliptic curve can be written as a plane cubic curve. More
precisely we could just as well have defined an elliptic curve as follows.

Definition 1.2. An elliptic curve over K, is the projectisation of a curve in A2
K

defined by the equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, ..., a6 ∈ K, such that the curve is smooth.

Let us briefly explian why the two definitions are equivalent. Given an elliptic
curve in the sense of 1.1, the Riemann Roch theorem gives an embedding of E into
P2 of the form given in 1.2, which sends the point 0 to the point (0 : 1 : 0) at ∞.
Conversely given a equation of the form in 1.2 which defines a smooth curve, one
shows that this curve is of genus 1 and the point at ∞ gives the point 0 ∈ E(K).

An equation of the above form which represents an elliptic curve E is called a
Weierstrass equation for E. One should note that it is possible that an elliptic can
be represented by more than one Weierstrass equation, however any two Weierstrass
equations can be related via a simple change of variables as in the proposition below.

Proposition 1.3. Let E be an elliptic curve over K
i)Any two Weirstrass equations are related by a linear change of variable given

by:
x = ux′ + r

y = u3y′ + su2x′ + t

where u, r, s, t ∈ K,u 6= 0.
ii) If charK 6= 2, 3 there exists a Weierstrass equation for E of the form

y2 = x3 + a4x+ a6

Exercise: Show that the planar curve defined by an equation y2 = x3 + a2x
2 +

a4x + a6 is smooth (and hence corresponds to an elliptic curve) if and only if the
cubic equation x3 + a2x

2 + a4x+ a6 has distinct roots.

Given a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for an elliptic curve E, we also define the following associated quantities.

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = 4a33 + a6,
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b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

∆ = −b22b8 − b34 − 27b26 + 9b2b4b6

j =
(b22 − 24b4)2

∆
∆ is the discrimianant of the equation and j is known as the j-invariant (we will
relate this to the complex j-function in a moment).

These become much simpler when if charK 6= 2, 3 and the equation is given in the
form of 1.3 ii). However even though we are really only interested in elliptic curves
over number fields, the proofs of many results reslies on the studying elliptic curves
over finite fields, including ones with characteristic 2 and 3. Thus we make the
following convention that all results will be stated for general Weierstrass equations,
however if it makes the proofs substantially shorter, we will assume charK 6= 2, 3
and refer the reader to the Appendix in Silverman ”AEC” for proofs of the general
case.

The following Proposition tells how these quantities behave under change of
variables as in 1.3 i).

Proposition 1.4. i) Under the change of variable

x = ux′ + r

y = u3y′ + su2x′ + t

we have
u12∆′ = ∆, j = j′

ii) A curve defined by a Weierstrass equation is non-singular if and onyl if ∆′

is non-zero.

Proof. i) Appendix of [AEC], or an exercise for masochists.
ii) Note that by part i), ∆′ 6= 0 iff ∆′ 6= 0 so suffices to check for one Weierstrass

representation. When charK 6= 2, 3, this follows from the exercise above since in
this case ∆ is just a multiple of the discriminant of the cubic polynomial. The
general case is another calculation, see Proposition 1.4 a) of [AEC]. �

For example, let Eτ be a complex torus over C defined by the lattice Λτ . The
Weierstrass ℘ function defines a bijection between Eτ and the curve defined by

y2 = 4x3 − g2(τ)x− g3(τ)

This defines a elliptic curve (also denoted Eτ ) over C, and we obtain a Weierstrass
equation by making the substitution y = 2y′. Under this bijection 0 is sent to the
point at ∞. In this case the quantities above simplify and we have

b2 = 0, b4 = g2(τ)/2, b6 = g3(τ), b8 = −g2(τ)2/16

and one easily calculates that

∆ = g2(τ)− 27g3(τ)3 = ∆(τ)

j = 1728
g2(τ)

∆(τ)
= j(τ)

Thus the j-function evaluated on τ is the j-invariant of the associated elliptic curve
of C/Λτ .

The j-invariant is then a well-defined invariant of the set of isomorphism classes
of elliptic curves over any field. We can say a little more.


